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SUMMARY 
A computational study of viscous flow between two eccentrically rotating cylinders is presented in which the 
effect of viscous dissipation is taken into account. The space discretization is based on piecewise linear finite 
elements with velocity stabilization, while the method of characteristics is used for time integration. 
Numerical results illustrate the efficiency of the adopted approach. 
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1. INTRODUCTION 

The flow of a viscous incompressible fluid between two rotating cylinders is a problem of great 
importance in fluid dynamics. In particular it has relevant applications in mechanical engineering 
such as the design of journal bearings extensively employed in rotating machines. 

The flow patterns are known to vary sharply with the Reynolds number and, if the cylinders are 
eccentric, the strong non-linearity of the problem requires a true two-dimensional modelling of 
the flow. For this reason, numerical study of this kind of flow appears to  be the best possibility 
nowadays, although in the past reasonable results have been obtained more classical 
approaches by several authors, among which those given by Taylor' are probably the best 
known. 

However, in such approaches, among other simplifications, it is assumed that the effects of 
viscous dissipation are negligible. Since the journal bearings of modern machines are required to 
rotate at drastically increasing speeds, the assumptions of such simplified models may lead to 
excessively erroneous project specifications data. 

The main purpose of this work is to introduce a finite element model aimed at studying the 
complete set of time-dependent equations in two-dimensional space describing the behaviour of a 
fluid between two cylinders, including the equation for heat generation by viscous dissipation. 

The non-linear fluid motion equation is approximated via the method of characteristics, while 
the coupling with the energy equation for the temperature is handled by means of a standard 
alternating direction technique. 

An outline of the paper is as,follows. In Section 2 we give a physical description of the problem 
with the corresponding equations. In Section 3 we describe the different numerical approaches, 
including a finite element discretization using a piecewise linear triangle with velocity stabiliz- 
ation. In Section 4 representative numerical results obtained by implementing the numerical 
schemes are given, followed by some conclusions in Section 5. 
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2. STATEMENT OF THE PROBLEM 

We want to solve the problem of the motion of a Newtonian viscous incompressible fluid in the 
region i2 illustrated in Figure 1, described by its velocity field and pressure. 

The inner cylinder is assumed to be rotating at constant speed with respect to the outer one. We 
assume a no-slip boundary condition for the velocity on both walls. The temperature of the fluid 
is assumed to be constant on the cylinders and its distribution is assumed to be governed by both 
conduction and convection, with a supplementary source of energy due to the effects of viscous 
dissipation. The following additional assumptions are incorporated into the formulation of the 
problem. 

(i) The flow is laminar. 
(ii) The gravitational force is negligible. 

(iii) The viscosity varies with temperature only. 
(iv) The heat capacity and the thermal conductivity of the fluid are constant. 

The equations governing the phenomenon under study are: 

momentum 

conservation of mass 

energy 

where (a, J) are the Cartesian co-ordinates, ji is the dynamic viscosity, p is the density, k is the 
thermal conductivity and c is the heat capacity. 

Figure 1. Schematic diagram of the problem 
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The dynamic viscosity is assumed to be a function of the temperature F of the type 

where A and B are physical constants. 
If we write - 

2 = r ix ,  .ij=riY, t = t /w, 

ii = uwri, ij= vwri,  F = pp(wri 12, F= TFo, fi=PcO, 

WLiO i= ___ Pe = Pr Re, p wr2 P O  c P r = - ,  
k pcFo ’ 

Re= .̂, 
P O  

where j i o = j i ( f o ) ,  equations (1H3) can be written in dimensionless form as 

a u  av -+-=o,  ax ay  

where 

is the dissipation function. 
The boundary conditions to complete the system (5H7) are 

(x -e / r i )2 ’+y2=1  - ’ u = y , v = e / r i - x ,  T = l  
x 2 + y 2 = ( r , / r i ) * + u = 0 , v = O ,  T = l .  

The initial conditions are 

u = o ,  v = o ,  T= 1. 

3. NUMERICAL MODELLING 

In order to implement the method of characteristics, we first notice that the Navier-Stokes 
equations (5) and (6) can be written as 

DV 1 
-=-gradp--rot(protV), Dt Re 

div V = 0, 

where D/Dt denotes the material derivative. 
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Let us now introduce a time step At by means of which we perform a time discretization in 

We denote by f"(X) the approximation of a function f(X, t )  for t = nAt, n 2 0. 
Now we approximate the time derivative off at time t, nAt d t < ( n +  l)At,  as 

system ( lo) ,  (11) as follows. 

Now we are given Vo, To and we compute successively approximations Vn+', pRf l  and T"+l 
for n=O, 1,2, . . . of the following alternating direction algorithm: 

V"+ 1 1 V"[X"(.; t ) ]  
_______ + -rot [p(T")rot V""] = -grad p"+l + 

At Re At ' 

divV"" =o, 
T" 1 

~ + V"+ ' div [grad T"' '1 - L V 2 T " +  = p(Tn)@(Vn+ ') + E ,  
P e  At 

where 

and X(x, y, r; t) is 
nAt d t d (n + 1)At. 

the function which gives the position of a particle of the fluid at time z, 

On the other hand, given the position (x, y )  of a particle at time t ,  its position at time r is given 
by X(x, y ,  r; t),  where 

- = v "  [x(X, y ,  t; t)]. 
dX 
d t  

In the present framework we know X"+l( - ;  t) and we wish to calculate Y(-; t). In order to do 
so, we integrate backwards the above differential equation by a second-order Runge-Kutta 
method, thereby defining X"( -; t) as follows: 

(15) 
At 
2 

X" = X"' ' - -{ Vn(X"+l) + V"[X"* - AtV"(X"' ')I }. 

Solution methods of equation (14) based on such an integration scheme are known to be 
unconditionally stable.2 However, in order to determine quick variations of the velocity, it is 
highly advisable to use small time steps. 

Notice that (12) is nothing but a Stokes system for (V"+l, p""). As is well known, there are 
different ways of solving such a system. In this paper, since we use a finite element method in 
which the pressure is continuous, we adopt the alternating direction strategy to compute V"+' 
and p"+ ', as suggested in Reference 3, which we briefly recall. 

After computing X", we compute p"+ by solving the Poisson equation 

(16) V2p"+l = -divV"[X"(.; t)], 

supplemented by Neumann-type non-homogeneous boundary conditions derived from the 
momentum equation. Finally we compute V"+l by solving the first equation in (12). 

1 
At 
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Figure 2. The mesh for test in a concentric problem 

Table I. Results of test in a concentric problem 

Re AEV REV AEP REP ITE Time 

1 0.00183 0.000508 000244 000200 1 1  2.27 
10 0.06040 0.018700 0.01710 0.01430 50 10.05 
20 0.1 1630 0.036440 0.02651 0.02227 83 16.53 
30 0.16560 0.052230 0.03430 0.02899 11.0 21.85 
40 0.209 10 0.066350 0.04090 0.03494 134 26.52 
50 0.24810 0.079180 0.04696 0.04013 156 30.98 

AEV-maximum absolute error for modulus of velocity. 
REV-maximum relative error for modulus of velocity. 
AEP-maximum absolute error for pressure. 
REP-maximum relative error for pressure. 
ITE-number of iterations needed. 
Time-CPU time in minutes. 

Figure 3. A typical mesh for an eccentric problem 
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Figure 4. (a) Streamlines, (b) pressure contours and (c) isotherms for eccentricity 0.17 and Re= 1 
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Figure 5. (a) Streamlines, (b) pressure contours and (c) isotherms for eccentricity 0.25 and Re= 1 
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Figure 6. (a) Streamlines, (b) pressure contours and (c) isotherms for eccentricity 0.37 and Re= 1 
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Figure 7. (aHb) 
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Figure 7. (a) Modulus of velocity, (b) pressure over inner cylinder and (c) temperature for eccentricity 0 1 7  and Re= 1 
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Figure 8. (a) 
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Figure 8. (a) Modulus of velocity, (b) pressure over inner cylinder and (c) temperature for eccentricity 0.25 and Re= 1 
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Figure 9. (aHb) 
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Figure 9. (a) Modulus of velocity, (b) pressure over inner cylinder and (c) temperature for eccentricity 0.37 and Re= 1 

In order to discretize the resulting equations for V"", p"" and T"", we use a mixed finite 
element method in which the pressure and the temperature are approximated by standard 
continuous piecewise linear functions defined on a triangular mesh, and the velocity is of the same 
type, though enriched by cubic functions that vanish on the boundary of the triangles. This kind 
of velocity approximation, first proposed in Reference 4, is aimed at stabilizing the pressure 
approximations while enabling a valid fulfilment of the incompressibility condition in an 
appropriate sense.5 

4. RESULTS 

In this section we show some representative numerical results obtained with a Fortran program, 
in which we codified the methodology described in the previous section. This code was run on a 
CYBER 170/835. 

In order to check the accuracy of our numerical approach, we first solved problems whose 
exact solution is known, including an isotherm test problem. In this case an analytic solution can 
be easily constructed if one considers concentric cylinders as seen from the model problem given 
in Reference 6. This problem is among those that we used in our tests, in which we considered a 
ratio r e l y i  = 2 .  

The resulting ring-shaped domain was subdivided into triangles in the manner illustrated in 
Figure 2. In the computations 288 elements were employed, thereby yielding 468 nodal points for 
the velocity and 180 nodal points for the pressure. 

In Table I we give results obtained for Reynolds numbers ranging from 1 to 50. In the different 
columns we display absolute and relative errors for both velocity and pressure according to the 
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abbreviations indicated thereunder. Moreover, the number of iterations needed to attain a 
stationary flow for a maximum relative difference between the computed velocities at two 
consecutive time steps of 

As one can infer from Table I, the results are rather satisfactory, although one observes a neat 
loss of accuracy as the Reynolds number increases. 

Now we switch to the simulations performed for a completely eccentric model problem in 
which we kept re/ri = 2. In all the computations a fixed mesh containing 384 elements was used, 
corresponding to 624 velocity nodal points and 240 pressure nodal points. A typical mesh is 
illustrated in Figure 3 for an eccentricity of 0.17. 

The tolerance for the maximum absolute error between the velocities in consecutive time steps 
is again 

The physical constants defining the viscosity are A = 2.427 x lo-'' and B = 6605.547, while the 
Prandtl number equals 29 x lo3. 

First we took R e =  1 and three different values of the eccentricity, namely 0.17,0.25 and 037. 
For each of these values we display in Figures 4-6 (a) the streamlines, (b) the pressure contours 
and (c) the isotherms. In Figures 7-9 we show (a) the modulus of the velocity, (b) the pressure and 
(c) the temperature along different sections of the domain specified in the figures, together with the 
corresponding notation. 

for At=O.l ,  is given, together with the CPU time. 

but this time we chose At=0 .01 .  

Figure 10. (a) Streamlines, (b) pressure contours and (c) isotherms for eccentricity 0.25 and Re= 10 



FLOW BETWEEN ECCENTRIC CYLINDERS 863 

7 1 4 Q  

91E.r: .>m+m (b) angle 

Figure 11. (aHb) 



864 J. H. C. D E  ARAUJO, V. RUAS A N D  A. S. VARGAS 

Figure 11. (a) Modulus of velocity, (b) pressure over inner cylinder and (c) temperature for eccentricity 0.25 and Re= 1 

Some conclusions can be drawn in the light of the above results, among which are the 

(i) The pressure profile on the inner cylinder is symmetric with respect to the horizontal axis; 
this effect had been predicted by Andres and S ~ a r i . ~  

(ii) The effect of the pressure gradient in the narrowest part of the flow domain tends to give a 
concave aspect to the streamlines. 

(iii) The temperature profiles are realistic and show quite a good qualitative agreement with 
results obtained for concentric cases using one-dimensional model.8 

Next we considered a fixed eccentricity of 0.25 and changed the Reynolds number to 10. In 
Figures 10 and 11 we show analogous results to Figures 4-6 and 7-9 respectively. 

It is interesting to observe that the total variation of the pressure on the inner cylinder increases 
significantly. This effect could be predicted, since the inertia of the fluid increases with the 
Reynolds number. 

following. 

5. CONCLUSIONS 

The main goals of this work were attained, since an efficient finite element model of the viscous 
flow of a Newtonian fluid with viscosity depending on the temperature was derived according to 
the numerical results given above. 

However, the need to work with finer meshes than those we used in the computations described 
in this paper appeared clearly. In order to cope with this difficulty, we are presently improving the 
solution of linear systems by implementing standard solvers with less storage requirements. We 
hope to be able to report these finer results with the resulting optimized code in the near future. 
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